

Small Interfering RNA Knocks Down the Molecular Target of Alendronate, Farnesyl Pyrophosphate Synthase, in Osteoclast and Osteoblast Cultures

Yuwei Wang,[†] Alexandra Panasiuk,[‡] and David W. Grainger^{*†,‡}

[†]Department of Pharmaceutics and Pharmaceutical Chemistry and [‡]Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112-5820, United States

ABSTRACT: Farnesyl pyrophosphate synthase (FPPS), an enzyme in the mevalonate pathway, is the inhibition target of alendronate, a potent FDA-approved nitrogen-containing bisphosphonate (N-BP) drug, at the molecular level. Alendronate not only inhibits osteoclasts but also has been reported to positively affect osteoblasts. This study assesses the knockdown effects of siRNA targeting FPPS compared with alendronate in both osteoclast and osteoblast cultures. Primary murine bone marrow cell-induced osteoclasts and the preosteoblast MC3T3-E1 cell line were used to assess effects of anti-FPPS siRNA compared with alendronate. Results show that both FPPS mRNA message and protein knockdown in serum-based culture is correlated with reduced osteoclast viability. FPPS siRNA is more potent than 10 μ M alendronate, but less potent than 50 μ M alendronate on reducing osteoclast viability. Despite FPPS knockdown, no significant changes were observed in osteoblast proliferation. FPPS knockdown promotes osteoblast differentiation significantly but not cell mineral deposition. However, compared with 50 μ M alendronate dosing, FPPS siRNA does not exhibit cytotoxic effects on osteoblasts while producing significant effects on osteoblast differentiation. Both siRNA and alendronate at tested concentrations do not have significant effects on cultured osteoblast mineralization. Overall, results indicate that siRNA against FPPS could be useful for selectively inhibiting osteoclast-mediated bone resorption and improving bone mass maintenance by influencing both osteoclasts and osteoblasts in distinct ways.

KEYWORDS: farnesyl pyrophosphate synthase, siRNA, osteoclasts, osteoblasts, alendronate, bone metabolism, mineralization

■ INTRODUCTION

Osteoporosis, a metabolic bone disease and leading cause of osteoporotic fragility fractures in both men and women, is rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. It is defined as a disorder of calcium and phosphate metabolism characterized by low bone mass and micro-architectural deterioration.¹ With decades of clinical experience, bisphosphonates are the most used pharmacological approach to treat osteoporosis currently,² due to their significant inhibition of osteoclast-mediated bone resorption. Nitrogen-containing bisphosphonates (N-BPs) are more potent than their non-nitrogen-containing bisphosphonate analogues in suppressing osteoclast activity. However, since “avascular osteonecrosis” in patients receiving pamidronate (N-BP) therapy was first described by Marx in 2003,³ their general side effects, including gastrointestinal irritation, bone/joint pain and jaw osteonecrosis,^{3–5} and their long half-life⁶ have clouded their therapeutic efficacy. Furthermore, due to their severe suppression of bone turnover,^{7,8} long-term bisphosphonate therapy can increase the risk of fractures, such as atypical fracture as a potential complication which was first reported in 2005.^{9,10} Therefore, designing an improved therapeutic that retains N-BPs’ inhibition of bone resorption

with significant reductions in its side effects will be highly significant.

The major intracellular target of alendronate, one of the most potent N-BPs, is farnesyl pyrophosphate (FPP) synthase (FPPS), a key enzyme in the mevalonate pathway.^{11–15} The mevalonate pathway is ubiquitous in mammalian cells, producing essential lipids including cholesterol and isoprenoids that are critical for post-translational prenylation of proteins regulating cell apoptosis, such as Ras and Rho.^{16,17} FPPS catalyzes the synthesis of the C₁₅ metabolite farnesyl pyrophosphate (FPP) through the sequential condensation of isopentenyl pyrophosphate (IPP), starting with dimethylallyl pyrophosphate (DMAPP) and then with the resultant geranyl pyrophosphate (GPP). FPP is also used as the substrate to produce the C₂₀ isoprenoid geranylgeranyl

Special Issue: Molecular Pharmaceutical Strategies for Improved Treatment of Musculoskeletal Diseases

Received: November 4, 2010

Accepted: December 27, 2010

Revised: December 13, 2010

Published: December 27, 2010

pyrophosphate (GGPP). Both FPP and GGPP are required for post-translational prenylation of small GTPases. FPP is therefore an essential isoprenoid intermediate in the mevalonate pathway required for the post-translational prenylation of essential GTPase signaling proteins.¹⁸ Crystallography studies reveal that, as potent inhibitors of osteoclastic activity, alendronate competitively binds with FPPS in the GPP/DMAPP binding site and the FPPS/alendronate complex can be further stabilized by binding with IPP.^{13,15} Downregulation of post-translational prenylation of GTP-binding proteins results in perturbed cell activity and the induction of osteoclast apoptosis.¹⁹ However, interestingly, increasing evidence suggests that these bisphosphonates also have an anabolic effect on osteoblasts. Specifically, N-BPs were shown to induce human osteoblast differentiation and mineralization in culture by inhibiting the mevalonate pathway.²⁰ Therefore, a therapeutic that avoids known side effects for N-BPs but reliably suppresses FPPS to inhibit the mevalonate pathway in both osteoclasts and osteoblasts could increase bone formation in the control of osteoporosis.

RNA interference (RNAi) is a potent therapeutic gene silencing tool to transiently knock down gene-specific mRNA expression levels by exploiting a natural intracellular cytoplasmic mRNA regulatory phenomenon in mammalian species.^{21–23} Gene silencing using short interfering RNAs (siRNAs) has many potential therapeutic applications.²⁴ We therefore examined the potential of administering small interfering RNA (siRNA) to suppress N-BP's molecular target, FPPS, in both osteoclasts and osteoblasts *in vitro* and compared its effects with the clinically familiar N-BP, alendronate. Osteoclasts were obtained from murine primary bone marrow monocytes.^{25,26} The preosteoblastic cell line MC3T3-E1 was used since it has been widely exploited as a culture model for osteoblast differentiation.²⁷ Expression levels of FPPS message and protein are monitored after siRNA transfections. Osteoclast viability and osteoblast proliferation, differentiation and mineral deposition post-transfections in serum culture were evaluated.

MATERIALS AND METHODS

Cell Cultures. Primary Murine Cell Harvest and Differentiation. C57BL/6 male mice (6–8 weeks old, Jackson Laboratories) were maintained in a specific pathogen-free facility at the University of Utah. All procedures were performed as approved by the Institutional Animal Care and Use Committee of University of Utah. Bone marrow cells (BMCs) were harvested from murine tibias and femurs of C57BL/6 male mice and differentiated into osteoclast precursors using previously described methods.^{25,26,28} Briefly, BMCs were cultured in α-MEM (Gibco) containing 10% heat-inactivated fetal bovine serum (FBS, Hyclone, UT) and 1% penicillin–streptomycin (Gibco) overnight at a density of 1×10^6 cells/mL, defined for all cell cultures as “complete media”. Nonadherent cells were harvested the next day and immediately seeded into 24-well tissue culture plates in complete media with 30 ng/mL M-CSF (R&D Systems) at a density of 1×10^6 cells per well. After 2 days of culture, adherent cells were used as osteoclast precursors. To generate osteoclasts, these precursor cells were incubated in 200 ng/mL RANKL and 30 ng/mL M-CSF (R&D Systems) in complete media, refreshed every other day. RANKL working concentrations to reliably generate osteoclasts from primary cell cultures in serum media were experimentally determined. Mature osteoclasts, distinguished by multinucleated, large cell bodies were

purified essentially as described elsewhere by gently washing with PBS without Ca^{2+} and Mg^{2+} (Gibco).^{26,29} It usually took 5 days of incubation, for at least 80% of the plate remains covered with osteoclasts. By tapping the plate, most mononuclear cells were detached and removed, while multinucleated osteoclasts remained on the plate.

Osteoblast Culture. The immature osteoblast-like cell line MC3T3-E1 (subclone 4, ATCC, USA) cells were cultured at 4×10^4 cells/well in 24-well plates. To induce differentiation, cells were maintained in complete media with 50 $\mu\text{g}/\text{mL}$ ascorbic acid (AA, Sigma) and 10 mM β -glycerophosphate (Sigma).³⁰ Medium was refreshed every other day.

sRANKL Expression. A glutathione-S-transferase (GST-tagged sRANKL construct was generated by cloning the murine sRANKL *Sall/NotI* fragment, coding 470–951 nucleotides, into the plasmid pGEX-4T-1 (a generous gift of Dr. M. F. Manolson, University of Toronto). The expressed protein was harvested as previously described.^{25,31,32} GST-tagged sRANKL was purified by Glutathione Sepharose 4B affinity resin (Amersham Pharmacia Biotech), dialyzed against phosphate buffered saline (PBS, Gibco) and concentrated using Amicon Ultra centrifuge tubes (Millipore). Protein concentration was determined by a BCA protein assay kit (Pierce).

siRNA Transfection of Osteoclasts and Osteoblasts. Four pure individual ON-TARGETplus siRNAs all designed to target murine FPPS (target sequences: siRNA1, 5'-GUC AAG UAC AAG ACG GCUU-3'; siRNA2, 5'-GAA AAG AGG UAC AAA UCGA-3'; siRNA3, 5'-AGA AAG UGA CCC CGG AAUU-3'; siRNA4, 5'-CCU AGA GUA CAA UGC CUUA-3') and a nontargeting control siRNA (sense, 5'-UAG CGA CUA AAC ACA UCA AUU-3'; antisense, 5'-UUA UCG CUG AUU UGU GUA GUU-3') were purchased from Dharmacon (USA). DharmaFECT 4 (DF4, Dharmacon) was used as the cationic lipid cell transfection reagent in complete media. Mature osteoclasts were prepared as described above, residual monocytes were removed from culture, and siRNA transfection was immediately performed. Transfection reagent DF4 and siRNA were prepared according to the manufacturer's instructions (Dharmacon). Final dosing concentrations of all siRNAs provided to each well were 125 nM in a total volume of 1.0 μL of DF4. Cell uptake of siRNA complexes was performed by incubating cells with siRNA complexes in complete media with 30 ng/mL M-CSF and 200 ng/mL RANKL at 37 °C with 5% CO_2 . Nonspecific knockdown from DF4 transfection was assessed by using nontargeting siRNA dosed under identical conditions. Multiple repeated siRNA cell transfections were performed on alternating days as specified in each figure legend.

MC3T3-E1 cells were cultured at 4×10^4 cells/well in 24-well plates in complete media overnight. Transfections were performed early the next day. Final dosing concentrations of all siRNAs provided to each well were identical to osteoclasts. Cell uptake of siRNA complexes was performed by incubating the cells with siRNA complexes in complete media with 50 $\mu\text{g}/\text{mL}$ AA and 10 mM β -glycerophosphate at 37 °C with 5% CO_2 .

Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). Total cellular RNA was isolated from each well at different time points after siRNA transfection using an RNeasy Mini Kit (Qiagen). Up to 4 μg of RNA was used to make cDNA with the SuperScript III first strand RT kit for PCR (Invitrogen). PCR primers were designed for FPPS (5'-TGC TGG TAT CAG AAG CCA GGC ATA-3', 5'-TGC TGG TAT CAG AAG CCA GGC ATA-3') and cyclophilin B (housekeeping control, 5'- AGC

GCT TCC CAG ATG AGA ACT TCA-3', 5'-GCA ATG GCA AAG GGT TTC TCC ACT-3') using Primerquest software and purchased from Integrated DNA Technologies (IDT). PCR was performed by routine methods described previously.³³

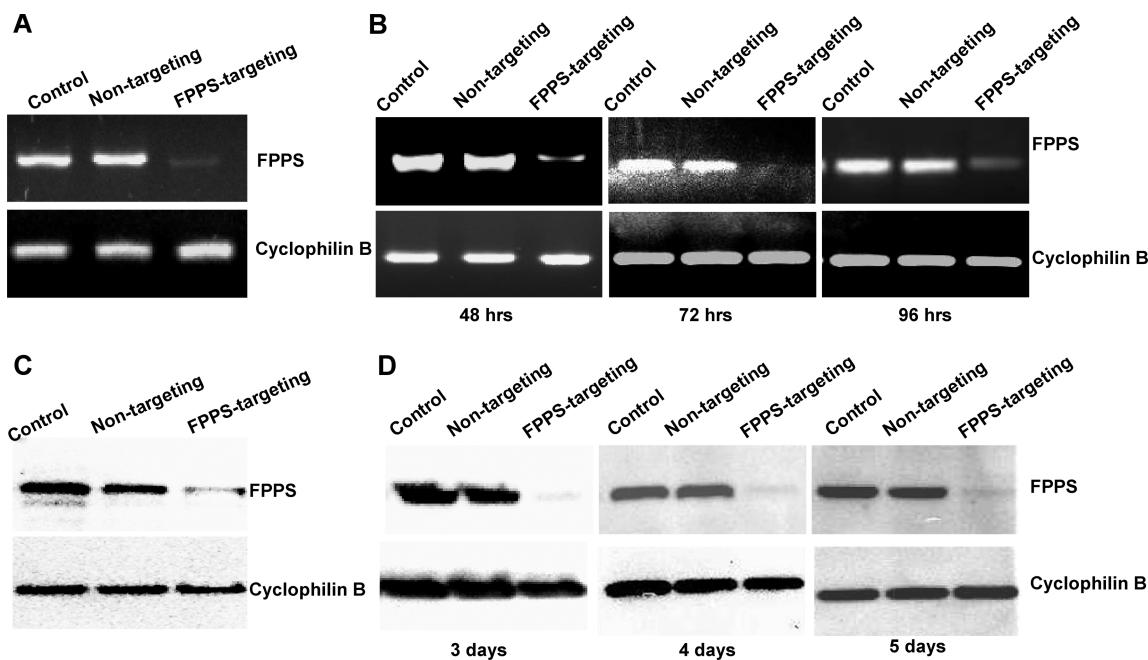
Western Immunoblot Assay. The assay was performed as described previously.³³ Briefly, cells were lysed and protein concentration was measured using a BCA protein assay kit (Pierce). Heat-denatured samples were separated on 4–12% SDS–polyacrylamide gels (Invitrogen) and blotted on PVDF filters (Bio-Rad). The filter was incubated overnight in primary antibody human antimouse FPPS (HCA012, AbD Serotec) in 5% BSA/TBST. Then the membrane was incubated with goat anti-human IgG (0500–0099, AbD Serotec). The housekeeping control was detected with antibody against cyclophilin B (PA1-027; Affinity BioReagents) and HRP-conjugated donkey anti-rabbit antibody (SA1-200, Affinity BioReagents). Secondary antibodies were detected with chemiluminescence reagent (Santa Cruz Biotechnology), and band images were captured using a Molecular Imager Gel Doc XR System (Bio-Rad).

Cell Viability. The relative number of viable osteoclasts or osteoblasts in each well was determined using the Cell Titer 96 Aqueous One Solution Cell Proliferation Assay (Promega, WI, USA). To terminate culture, medium was replaced with 300 μ L/well of fresh complete medium with the addition of 60 μ L of Cell Titer 96 Aqueous One Solution, including three wells containing only medium for background subtraction. Cells were then incubated at 37 °C with 5% CO₂ for 2 h, and optical absorbance at 490 nm was then determined using a plate reader (TECAN GENIOS Plus).

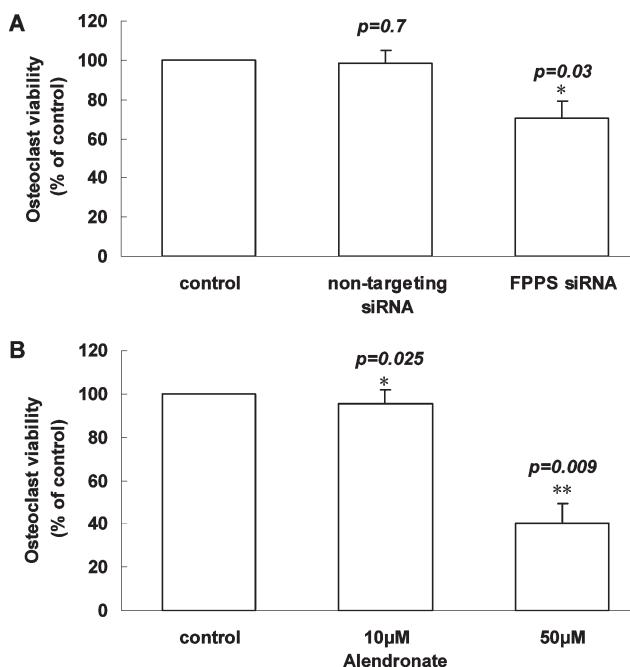
Alkaline Phosphatase Activity. To evaluate the differentiation of MC3T3-E1 cells, alkaline phosphatase (ALP) activity was determined. MC3T3-E1 cells were seeded at 4×10^4 cells/well in 24-well plate and transfected with siRNA or incubated with complete medium containing various concentrations of alendronate (gift from Prof. J. Kopeček, University of Utah). ALP activity was determined using a QuantiChrom Alkaline Phosphatase Assay Kit (BioAssay Systems, CA). Alkaline phosphatase activity values were normalized to the relative number of viable cells as determined directly using the above-mentioned cell proliferation assay.

Cell Mineralization. The degree of mineralization of cultured MC3T3-E1 cells was determined using Alizarin red staining,²⁰ sensitive to the identification of cell calcification in vitro. Briefly, medium was aspirated and the cells were rinsed twice with PBS. Then cells were fixed with ice-cold 70% (v/v) ethanol for 1 h. Ethanol was removed, and the cells were then stained with 2% Alizarin Red S (Sigma) in deionized water (pH 4.2) for half an hour at room temperature. The staining solution was removed, and the cells were rinsed five times with deionized water. After removal of the water, cells were incubated in PBS for 15 min at room temperature on a shaker. After PBS was removed, the cells were rinsed with PBS again. Dye destaining was performed by incubating the cells with 10% (w/v) cetylpyridinium chloride in 10 mM sodium phosphate (pH 7) washing buffer at room temperature. The washing buffer was then transferred to a 96-well plate, and the optical absorbance at 562 nm was measured using a plate reader (TECAN GENIOS Plus). The concentration of Alizarin Red S in the wash buffer was determined according to Alizarin Red S standards. Mineralization values were normalized to the relative number of viable cells determined by using Cell Titer 96 Aqueous One Solution Cell Proliferation Assay as described above. Mineralization produced in culture after triplicate

serial siRNA transfections was measured the day following the last transfection.


Statistical Analysis. Cell viability, ALP and mineralization results are reported as mean \pm standard deviation relative to control. Significance is determined using the two-tailed Student's *t*-test. All experiments were repeated three times. Results are considered statistically significant if $p < 0.05$.

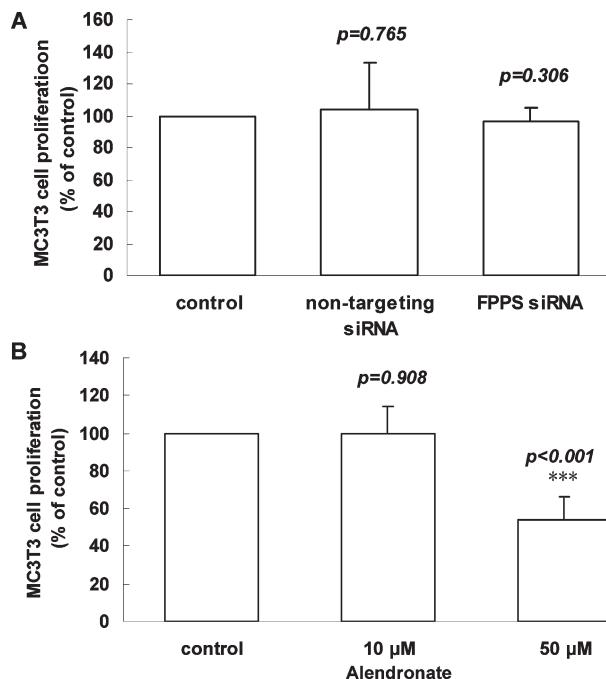
RESULTS


Successful FPPS Message and Protein Knockdown in Both Osteoclast and Osteoblast Cultures. Since this study's focus was not on assessing transfection efficiency but rather on assessing post-transfection knockdown of target, the established commercial cationic cell transfection surfactant, DharmaFECT 4 (DF4), was used for siRNA transfection based on its frequency of successful use and manufacturer's instructions claiming it "appropriate" for mouse and rat cell lines. Importantly, siRNA transfections were all performed in serum-containing media to avoid serum-free medium-induced cell stress. Each siRNA sequence was tested individually for effectiveness to knock down FPPS expression in osteoclasts in complete medium. siRNA-2 produced the greatest overall knockdown effect from the commercial library and, therefore, was used for all further siRNA transfections of both osteoclast and osteoblast cultures. Nonspecific knockdown of FPPS target by DF4, evaluated using nontargeting siRNA and DF4 in both cultures, is not significant by PCR analysis (Figure 1). Significant downregulation of FPPS gene and protein expression was observed in osteoclast cultures (Figure 1A,C). Since all assays on osteoblasts were performed 5 days post-transfection, gene and protein expression levels were monitored prior to this on days 2 to 5. Treatment of osteoblasts with FPPS siRNA-2 also significantly suppressed FPPS message expression in cultures until day 4, when cell assays were performed, compared to untreated and nontargeting siRNA-transfected osteoblasts (Figure 1B). Significantly, sustained downregulation of FPPS protein expression was also observed 5 days post-transfection (Figure 1D).

Comparison of FPPS siRNA and Alendronate on Osteoclast Cytotoxicity. Osteoclast viability assays were performed 3 days after siRNA transfections in serum-based cultures. Osteoclast numbers were significantly reduced in FPPS siRNA-treated groups compared with control groups (70.3% of the control, $*p = 0.03$, Figure 2A). Compared with nontargeting siRNA which showed 98.4% viability of the untreated control, FPPS siRNA significantly suppressed viability ($*p = 0.015$), indicating that reduced cell viability results from specific FPPS gene knockdown, but not from nonspecific effects of siRNA or transfection reagent dosing. Osteoclasts were treated with alendronate at two different concentrations (10 μ M and 50 μ M). After three day culture (the same duration as siRNA transfection), cell viability was reduced to 95.5% ($*p = 0.025$) in the 10 μ M alendronate-treated group and to 40.3% ($**p = 0.009$) in the 50 μ M alendronate-treated group. Both cell viability decreases are significant compared with control (Figure 2B).

Comparison of FPPS siRNA and Alendronate Treatments on MC3T3-E1 Preosteoblast Cell Proliferation. FPPS siRNA and alendronate effects on MC3T3-E1 preosteoblast cell proliferation were compared five days post-treatment. As shown in Figure 3A, FPPS siRNA had little effect on cell proliferation (95.9% of the control) compared with nontreated control groups, as well as nontargeting siRNA-treated groups (103.7% of the

Figure 1. Successful FPPS message and protein knockdown in both osteoclast and osteoblast cultures. FPPS message knockdown by FPPS siRNA in (A) osteoclast culture 48 h post-single transfection and (B) osteoblast culture 48 to 96 h post-single transfection compared with untreated cells and cells transfected with nontargeting siRNA. Inhibition of target FPPS gene expression at the mRNA level is shown by PCR. FPPS protein knockdown by FPPS siRNA in (C) osteoclast 3 days post-single transfection and (D) osteoblast cultures 3 to 5 days post-single transfection compared with untreated cells and cells transfected with nontargeting siRNA. Protein expression was evaluated by Western blotting.


Figure 2. Both FPPS siRNA and alendronate reduce osteoclast cell viability. Cytotoxicity was determined using the Cell Titer 96 Aqueous One Solution Cell Proliferation assay. (A) Cultured osteoclast viability comparing nontargeting siRNA and FPPS siRNA three days post-transfection. (B) Osteoclast viability compared for 10 μ M and 50 μ M alendronate three days postdosing to cultures (p values shown are obtained by comparing each group with controls, $n = 3$).

control). Furthermore, there is no significant difference between FPPS siRNA and nontargeting siRNA groups ($p = 0.55$). For

alendronate, three different concentrations (10 μ M, 50 μ M and 100 μ M) were initially used. The 100 μ M alendronate dose showed significant evidence of cell death ($>90\%$), a likely result of bisphosphonate toxicity, and this concentration was not continued. Compared with nontreated controls, there is no significant inhibition of cell proliferation at 10 μ M (Figure 3B, $p = 0.908$), but when alendronate's concentration increased to 50 μ M, cell viability was reduced to 54% compared to control (Figure 3B, $***p < 0.001$). There is also a significant difference in cell viability between the 50 μ M and 10 μ M groups ($***p < 0.001$).

Comparison of FPPS siRNA and Alendronate Treatments on MC3T3-E1 Preosteoblast Cell Differentiation and Mineralization. MC3T3-E1 preosteoblast cell differentiation was detected by measuring ALP activity. After five-day culture, the effects of nontargeting siRNA, FPPS siRNA, and alendronate (10 μ M and 50 μ M) on MC3T3 cell differentiation were compared. As shown in Figure 4A, nontargeting siRNA had no effect on osteoblastic differentiation compared with control (99.5%, $p = 0.977$). However, FPPS siRNA treatment increased cell ALP activity and showed a significant 21% increase compared to nontreated control groups ($*p = 0.049$). When alendronate concentration was 10 μ M, cell ALP activity was reduced to 85.9% compared to control, but was not significant ($p = 0.12$). However, 50 μ M alendronate treatment significantly increased cell ALP activity to 164% (Figure 4B, $*p = 0.017$).

Full comparison of these effects on cell mineralization among nontargeting siRNA, FPPS siRNA and alendronate (10 μ M and 50 μ M) is summarized in Figure 5. Nontargeting siRNA reduced MC3T3 cell mineralization to 81% of control ($p = 0.081$). FPPS siRNA of single dose had no significant effect on cell mineralization (99.5%, $p = 0.758$) after 5-day culture compared with control (p value between nontargeting siRNA and FPPS siRNA groups is 0.078). There is no significant influence of 10 μ M alendronate on

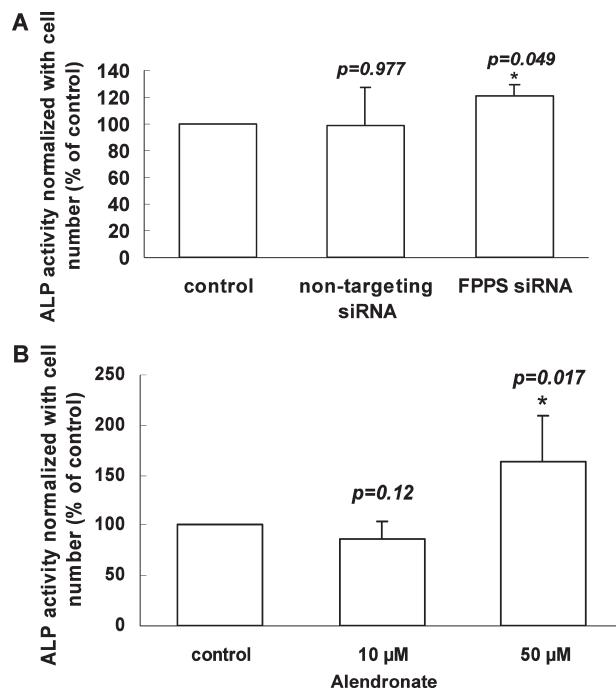


Figure 3. FPPS siRNA is not as potent as alendronate ($50 \mu\text{M}$) on reducing cultured MC3T3-E1 preosteoblast cell proliferation. Cell proliferation was determined using the Cell Titer 96 Aqueous One Solution Cell Proliferation assay. (A) Osteoblast viability comparing nontargeting siRNA and FPPS siRNA five days post-single transfection in serum-based cultures. (B) The comparison of osteoblast viability compared for $10 \mu\text{M}$ and $50 \mu\text{M}$ alendronate five days postdosing to cultures. (*p* values shown are obtained by comparing each group with controls, $n = 3$).

cell mineralization (95.3%, $p = 0.318$). However, $50 \mu\text{M}$ alendronate increased cell mineralization to 155.5% compared to controls ($p = 0.058$). Cell mineralization under triplicate FPPS siRNA transfections on every other day showed 9.98% increase compared with control (not significantly different). Triplicate nontargeting siRNA transfection showed only 0.51% increase compared with control (Figure 5C). In addition, both nontargeting and FPPS siRNA (single and triple dosing) have no observed influence on osteoblast proliferation (Figure 5D).

■ DISCUSSION

Bisphosphonates are potent inhibitors of bone resorption and widely used in clinic to treat postmenopausal osteoporosis. However, more attention has been drawn recently to their side effects, such as bisphosphonate-associated osteonecrosis and their long half-life that complicates fracture healing.⁷ Inhibition of FPPS in the mevalonate pathway has been implicated as the mechanism of action for select N-BPs at the molecular level in both osteoclasts and osteoblasts.^{11–13,20,34} Osteoclasts and osteoblasts are closely correlated with each other; therefore, in our study use of siRNA to knock down FPPS expression in both osteoclasts and osteoblasts was examined and compared with N-BP alendronate. Alendronate is one of the most potent FDA-approved N-BPs,³⁵ commonly prescribed for the treatment and prevention of osteoporosis. Actual dosing ranges of alendronate to which bone cells are exposed under pharmacological conditions are unknown. Many studies have shown that bisphosphonate affects cells in a dose-dependent manner in cultures.^{20,36,37} We therefore employed three alendronate concentrations ($10 \mu\text{M}$, $50 \mu\text{M}$ and $100 \mu\text{M}$)

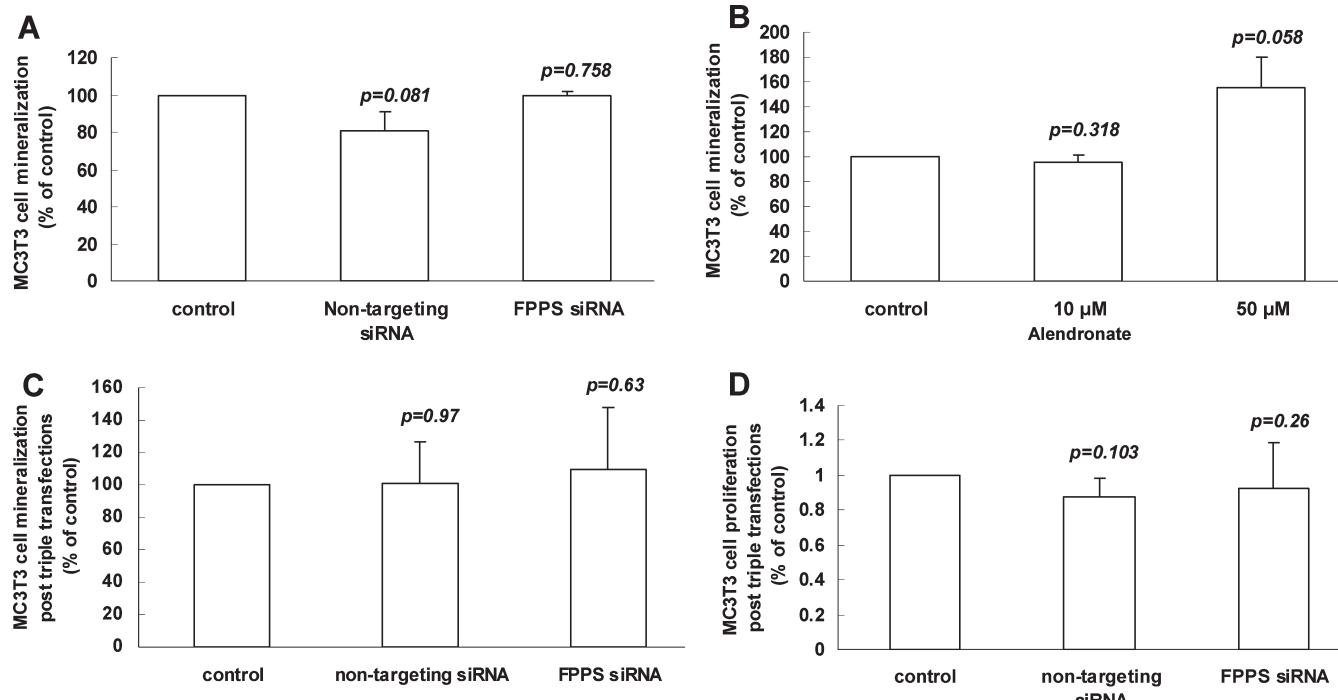


Figure 4. Both FPPS siRNA and alendronate ($50 \mu\text{M}$) significantly increase ALP activity during MC3T3-E1 preosteoblast differentiation. Cell differentiation was monitored by measuring ALP activity. (A) Osteoblast ALP activity compared for nontargeting siRNA and FPPS siRNA five days post-single transfection in serum-containing cultures. (B) Osteoblast ALP activity compared for $10 \mu\text{M}$ and $50 \mu\text{M}$ alendronate five days postdosing to cultures (*p* values shown are obtained by comparing each group to controls, $n = 3$).

in cell cultures. Alendronate at $100 \mu\text{M}$ concentration significantly reduced cell viability in both cell types, consistent with the observation of Im et al.³⁸ who showed inhibited cellular proliferation when alendronate was used at $100 \mu\text{M}$. We chose alendronate working concentration within the range of 10 – $100 \mu\text{M}$ since significant effects on cells have been observed in other studies.^{20,36,37,39}

FPPS siRNA-2 provides the highest knockdown of FPPS mRNA in primary BMC cultures in our preliminary studies (data not shown) and was used for all experiments. A dose of 125 nM siRNA and the commercial cationic lipid transfection reagent, DF4, demonstrated successful inhibition of both the target FPPS gene and protein expression 48 h and 72 h, respectively, after transfection in serum-based culture for osteoclasts. In osteoblast cultures, successfully sustained gene and protein knockdown were obtained up to 5 days post-transfections. In addition, evidence indicates that FPPS message knockdown is not caused by the transfection reagent, as there was no significant reduction of FPPS mRNA or protein expression in cells transfected with nontargeting siRNA/DF4 complexes.

Classically, the majority of reports regarding bisphosphonates have been focused on their effects on reducing osteoclast bone resorbing activities.^{40–45} A variety of modes of drug action on osteoclasts have been explored. The present study focused on cytotoxic depletion of osteoclasts since both *in vitro* and *in vivo* studies provide evidence that bisphosphonates reduce osteoclast numbers and activity.⁴³ FPPS siRNA showed significant inhibition on growth of cultured murine bone marrow cell-induced osteoclasts. This suppression is stronger than that from $10 \mu\text{M}$

Figure 5. Neither FPPS siRNA nor alendronate significantly affect MC3T3-E1 preosteoblast cell mineralization. Mineralization of MC3T3-E1 cell cultures was determined using alizarin red staining. (A) Osteoblast mineral deposition compared for nontargeting siRNA and FPPS siRNA five days post-single transfection and (C) post-triple transfections in serum-based cultures. (B) Osteoblast mineral deposition compared for 10 μ M and 50 μ M alendronate five days postdosing to cultures. (D) Osteoblast proliferation after triplicate nontargeting and FPPS siRNA transfections (*p* values shown are obtained by comparing each group to controls, *n* = 3).

alendronate, but not as potent as that from alendronate at 50 μ M. Cell viability can be reduced to 40% by alendronate at 50 μ M compared with the nontreated control. FPPS siRNA effects on cell viability are less than expected based on the substantial mRNA and protein knockdown results, exhibiting about 30% reduction compared with control. A possible explanation for this could be intrinsic disproportionate relationships between cell viability and FPPS enzyme activity. Unlike other functional cell proteins, e.g. cell receptors where decreased protein expression leads to proportionate decreases in functions, enzymatic turnover over activity can remain significant despite relative knockdown, distinguishing functional differences between knockdown and knockout. Inhibition of the mevalonate pathway has been linked to bisphosphonate-induced apoptosis in macrophages and human myeloma cells *in vitro*.^{46,47} These reports suggest that reduced osteoclast viability results from FPPS siRNA-induced cell apoptosis by preventing protein prenylation in osteoclasts.

Except for the effect of bisphosphonate on osteoclast apoptosis, it was also reported to be able to inhibit osteoclast formation in long-term human marrow culture alone⁴⁰ or by acting on osteoblastic cells.⁴⁸ In addition, mevalonate pathway is essential for producing DMAPP and IPP which involve in the biosynthesis of molecules for cell membrane maintenance. Taken together, it would be interesting to further investigate the effects of FPPS siRNA on osteoclastogenesis and osteoclast podosome assembly and actin ring formation which play a critical role of osteoclastic bone resorption.

Increasing evidence showing that N-BPs directly affect osteoblast proliferation, differentiation and mineralization^{37,49,50} in ways distinct from those of osteoclasts prompted study of the role of FPPS siRNA on the mevalonate pathway in MC3T3-E1

preosteoblast cells cultures. Changes in MC3T3-E1 cell viability in response to FPPS siRNA addition to cultures was compared to single alendronate treatments. As expected, nontargeting siRNA does not significantly influence cultured cell proliferation compared with controls without any treatment. However, FPPS siRNA addition does not significantly change cell proliferation compared with both control and nontargeting siRNA. This suggests that FPPS knockdown is not sufficient to influence MC3T3-E1 viability within 5 days. No difference is observed on cell viability between cells without any treatment and those treated with 10 μ M alendronate. However, when alendronate concentration increased to 50 μ M, cell viability was inhibited dramatically. During culture, significant numbers of dead cells were not evident, suggesting that the decreased cell viability results from suppression of cell proliferation, but not cytotoxicity. This observation is not surprising since similar alendronate inhibition of cell proliferation is also reported with human fetal osteoblast cells,³⁷ osteoclasts,^{43,51} and primary osteoblasts.^{50,52} Though some opposing effects have been reported,^{38,53,54} this may be due to variations in experiments, including cell types, culture duration, bisphosphonate analogue chemistries and concentrations applied.

While FPPS siRNA did not influence osteoblast viability significantly, it increases total alkaline phosphatase activity significantly compared with controls lacking any treatment. These observations indicate that FPPS knockdown enhances osteoblast differentiation without affecting cell proliferation. Stronger induction of alkaline phosphatase activity was obtained by treating these cells with 50 μ M alendronate. These findings concur with those of a previous study suggesting that bisphosphonates enhance osteoblast progression from the proliferation stage to the matrix

maturation stage.³⁷ However, culture mineralization was increased in MC3T3 cells treated with 50 μ M alendronate by 55.5%, nearly significant compared with control ($p = 0.058$) and correlates with previous reports²⁰ showing increased human fetal osteoblast cell mineralization by pamidronate and zoledronate. Thus, N-BP alendronate augments cultured cell mineralization within 5 days post-treatment. In contrast, for osteoblasts treated with siRNA, there is no significant difference in mineralization between the control and nontargeting siRNA or FPPS siRNA after single transfections. To investigate the possibility for disproportionate functional knockdown of cell enzyme (ALP) activity, triplicate siRNA transfections dosed every other day were performed to minimize FPPS expression during the subsequent cell assay period. While triplicate dosing of nontargeting siRNA produces no observable effects on cell mineralization, multiple FPPS transfections generates about 10% increase of cell mineralization compared with control. This observed increase may suggest some small cell mineralization enhancement from FPPS knockdown. However, FPPS knockdown did not enhance cell mineralization compared with 50 μ M alendronate. Although alendronate at 50 μ M can promote cell mineralization by 56%, this effect is obscured by its severe suppression of cell proliferation. Cell mineral deposition by 50 μ M alendronate in term of percentage of cell proliferation (mineralization % \times proliferation %) is 84% compared to the controls, while mineralization from FPPS single transfection is 95% and by triple transfections is 101.7% of the controls. Overall, the effect of FPPS knockdown on cell mineralization is not significant. Based on the siRNA results, the direct effect of FPPS changes on cell mineralization is not clear. Osteoclasts and osteoblasts closely communicate and interact with each other *in vivo* to regulate bone remodeling. Bisphosphonates can act indirectly on osteoclasts through their action on osteoblast lineage cells.^{39,55–58} Therefore, further study is required to determine whether FPPS siRNA effects on osteoblasts seen in this study indirectly influence osteoclasts.

In summary, single-dose FPPS siRNA, unlike results obtained from osteoclast cultures, did not show any significant cytotoxicity in MC3T3-E1 preosteoblasts. Compared with 50 μ M alendronate which exhibits potent inhibition of cell viability, FPPS siRNA has much milder effects on cell proliferation. Both FPPS siRNA and 50 μ M alendronate can promote cell differentiation significantly, but FPPS siRNA increases ALP activity without significantly inhibiting cell proliferation. Within 5 days post-treatment, FPPS siRNA did not evidence an influence on cell mineral deposition.

CONCLUSION

Significantly, to the best of our knowledge, this is the first report to knock down the molecular target of clinically common nitrogen-containing bisphosphonates using siRNA, and comparing these effects to alendronate, both on osteoclasts and osteoblasts in similar cultures. Results from both the culture of primary murine bone marrow cell-induced osteoclasts and MC3T3-E1 preosteoblast cells showed that FPPS siRNA suppresses osteoclast viability significantly, but with less potency than alendronate at 50 μ M. There is no observed effect of FPPS siRNA on osteoblast proliferation. However, osteoblast differentiation can be significantly increased by FPPS siRNA. Both FPPS siRNA and alendronate show no significant effects on osteoblast mineral deposition. In summary, siRNA targeting FPPS has a beneficial effect at the cellular level of inhibiting excessive bone resorption

and increasing overall bone mass maintenance by its effects on both osteoblasts and osteoclasts and suggest that it has clinical potential.

AUTHOR INFORMATION

Corresponding Author

*D.W.G.: University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 S 2000 E, Salt Lake City, UT 84112-5820 USA; tel, +1 801-581-3715; fax, +1 801-581-3674; e-mail, David.Grainger@utah.edu.

ACKNOWLEDGMENT

The authors appreciate the generous gift of the sRANKL plasmid expression construct from Professor M. F. Manolson, University of Toronto, Canada, and the alendronate from Professor J. Kopeček, University of Utah, USA. This work was partially supported by National Institutes of Health Grant EB00894.

ABBREVIATIONS USED

AA, ascorbic acid; FPP, farnesyl pyrophosphate; FPPS, farnesyl pyrophosphate synthase; M-CSF, macrophage-colony stimulating factor; RANK, receptor activator of nuclear factor κ B; RANKL, RANK ligand; N-BPs, nitrogen-containing bisphosphonates; IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; GPP, geranyl pyrophosphate; GGPP, geranyl-geranyl pyrophosphate; GST, glutathione-S-transferase; RNAi, RNA interference; siRNA, small interfering RNA; BMC, bone marrow cell; DF, DharmaFECT; ALP, alkaline phosphatase; PBS, phosphate buffered saline; α -MEM, α -minimal essential medium; FBS, fetal bovine serum; PCR, polymerase chain reaction.

REFERENCES

- (1) NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. *JAMA, J. Am. Med. Assoc.* **2001**, *285* (6), 785–95.
- (2) Rogers, M. J.; Watts, D. J.; Russell, R. G. Overview of bisphosphonates. *Cancer* **1997**, *80* (8 Suppl.), 1652–60.
- (3) Marx, R. E. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. *J. Oral Maxillofacial Surg.* **2003**, *61* (9), 1115–7.
- (4) Dodson, T. B.; Guralnick, W. C.; Donoff, R. B.; Kaban, L. B. Massachusetts General Hospital/Harvard Medical School MD oral and maxillofacial surgery program: a 30-year review. *J. Oral Maxillofacial Surg.* **2004**, *62* (1), 62–5.
- (5) Ruggiero, S. L.; Mehrotra, B.; Rosenberg, T. J.; Engroff, S. L. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. *J. Oral Maxillofacial Surg.* **2004**, *62* (5), 527–34.
- (6) Khan, S. A.; Kanis, J. A.; Vasikaran, S.; Kline, W. F.; Matuszewski, B. K.; McCloskey, E. V.; Beneton, M. N.; Gertz, B. J.; Sciberras, D. G.; Holland, S. D.; Orgee, J.; Coombes, G. M.; Rogers, S. R.; Porras, A. G. Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. *J Bone Miner. Res.* **1997**, *12* (10), 1700–7.
- (7) Yang, K. H.; Won, J. H.; Yoon, H. K.; Ryu, J. H.; Choo, K. S.; Kim, J. S. High concentrations of pamidronate in bone weaken the mechanical properties of intact femora in a rat model. *Yonsei Med. J.* **2007**, *48* (4), 653–8.
- (8) Sebba, A. Osteoporosis: how long should we treat? *Curr Opin. Endocrinol. Diabetes Obes.* **2008**, *15* (6), 502–7.
- (9) Sellmeyer, D. E. Atypical fractures as a potential complication of long-term bisphosphonate therapy. *JAMA, J. Am. Med. Assoc.* **2010**, *304* (13), 1480–4.

(10) Odvina, C. V.; Zerwekh, J. E.; Rao, D. S.; Maalouf, N.; Gottschalk, F. A.; Pak, C. Y. Severely suppressed bone turnover: a potential complication of alendronate therapy. *J. Clin. Endocrinol. Metab.* **2005**, *90* (3), 1294–301.

(11) van Beek, E.; Pieterman, E.; Cohen, L.; Lowik, C.; Papapoulos, S. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. *Biochem. Biophys. Res. Commun.* **1999**, *264* (1), 108–11.

(12) Bergstrom, J. D.; Bostedor, R. G.; Masarachia, P. J.; Reszka, A. A.; Rodan, G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. *Arch. Biochem. Biophys.* **2000**, *373* (1), 231–41.

(13) Kavanagh, K. L.; Guo, K.; Dunford, J. E.; Wu, X.; Knapp, S.; Ebetino, F. H.; Rogers, M. J.; Russell, R. G.; Oppermann, U. The molecular mechanism of nitrogen-containing bisphosphonates as antosteoporosis drugs. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103* (20), 7829–34.

(14) Dunford, J. E.; Thompson, K.; Coxon, F. P.; Luckman, S. P.; Hahn, F. M.; Poulter, C. D.; Ebetino, F. H.; Rogers, M. J. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. *J. Pharmacol. Exp. Ther.* **2001**, *296* (2), 235–42.

(15) Rondeau, J. M.; Bitsch, F.; Bourgier, E.; Geiser, M.; Hemmig, R.; Kroemer, M.; Lehmann, S.; Ramage, P.; Rieffel, S.; Strauss, A.; Green, J. R.; Jahnke, W. Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. *ChemMedChem* **2006**, *1* (2), 267–73.

(16) Lacal, J. C. Regulation of proliferation and apoptosis by Ras and Rho GTPases through specific phospholipid-dependent signaling. *FEBS Lett.* **1997**, *410* (1), 73–7.

(17) Constantz, B. R.; Ison, I. C.; Fulmer, M. T.; Poser, R. D.; Smith, S. T.; VanWagoner, M.; Ross, J.; Goldstein, S. A.; Jupiter, J. B.; Rosenthal, D. I. Skeletal repair by in situ formation of the mineral phase of bone. *Science* **1995**, *267* (5205), 1796–9.

(18) Rogers, M. J. New insights into the molecular mechanisms of action of bisphosphonates. *Curr. Pharm. Des.* **2003**, *9* (32), 2643–58.

(19) Tenenbaum, H. C.; Shelemyay, A.; Girard, B.; Zohar, R.; Fritz, P. C. Bisphosphonates and periodontics: potential applications for regulation of bone mass in the periodontium and other therapeutic/diagnostic uses. *J. Periodontol.* **2002**, *73* (7), 813–22.

(20) Reinholtz, G. G.; Getz, B.; Sanders, E. S.; Karpeisky, M. Y.; Padyukova, N.; Mikhailov, S. N.; Ingle, J. N.; Spelsberg, T. C. Distinct mechanisms of bisphosphonate action between osteoblasts and breast cancer cells: identity of a potent new bisphosphonate analogue. *Breast Cancer Res. Treat.* **2002**, *71* (3), 257–68.

(21) Hammond, S. M.; Bernstein, E.; Beach, D.; Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* **2000**, *404* (6775), 293–6.

(22) Calle, Y.; Jones, G. E.; Jagger, C.; Fuller, K.; Blundell, M. P.; Chow, J.; Chambers, T.; Thrasher, A. J. WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption. *Blood* **2004**, *103* (9), 3552–61.

(23) Aigner, A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. *J. Biomed. Biotechnol.* **2006**, *2006*, 1–15.

(24) de Fougerolles, A.; Vornlocher, H. P.; Maraganore, J.; Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. *Nat. Rev. Drug Discovery* **2007**, *6* (6), 443–53.

(25) Wang, Y.; Lebowitz, D.; Sun, C.; Thang, H.; Grynpas, M. D.; Glogauer, M. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. *J. Bone Miner. Res.* **2008**, *23* (2), 260–70.

(26) Takami, M.; Kim, N.; Rho, J.; Choi, Y. Stimulation by toll-like receptors inhibits osteoclast differentiation. *J. Immunol.* **2002**, *169* (3), 1516–23.

(27) Issack, P. S.; Lauerman, M. H.; Helfet, D. L.; Doty, S. B.; Lane, J. M. Alendronate Inhibits PTH (1–34)-induced Bone Morphogenetic Protein Expression in MC3T3-E1 Preosteoblastic Cells. *HSS J.* **2007**, *3* (2), 169–72.

(28) Chamberlain, L. M.; Godek, M. L.; Gonzalez-Juarrero, M.; Grainger, D. W. Phenotypic non-equivalence of murine (monocyte- macrophage cells in biomaterial and inflammatory models. *J. Biomed. Mater. Res. A* **2009**, *88* (4), 858–71.

(29) Trebec, D. P.; Chandra, D.; Gramoun, A.; Li, K.; Heersche, J. N.; Manolson, M. F. Increased expression of activating factors in large osteoclasts could explain their excessive activity in osteolytic diseases. *J. Cell. Biochem.* **2007**, *101* (1), 205–20.

(30) Lee, Y. K.; Song, J.; Lee, S. B.; Kim, K. M.; Choi, S. H.; Kim, C. K.; LeGeros, R. Z.; Kim, K. N. Proliferation, differentiation, and calcification of preosteoblast-like MC3T3-E1 cells cultured onto non-crystalline calcium phosphate glass. *J. Biomed. Mater. Res. A* **2004**, *69* (1), 188–95.

(31) Lambrinoudaki, I.; Christodoulakos, G.; Botsis, D. Bisphosphonates. *Ann. N.Y. Acad. Sci.* **2006**, *1092*, 397–402.

(32) Hausler, K. D.; Horwood, N. J.; Chuman, Y.; Fisher, J. L.; Ellis, J.; Martin, T. J.; Rubin, J. S.; Gillespie, M. T. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. *J. Bone Miner. Res.* **2004**, *19* (11), 1873–81.

(33) Wang, Y.; Grainger, D. W. siRNA knock-down of RANK signaling to control osteoclast-mediated bone resorption. *Pharm. Res.* **2010**, *27* (7), 1273–84.

(34) Naidu, A.; Dechow, P. C.; Spears, R.; Wright, J. M.; Kessler, H. P.; Opperman, L. A. The effects of bisphosphonates on osteoblasts in vitro. *Oral Surg., Oral. Med., Oral. Pathol., Oral. Radiol., Endod.* **2008**, *106* (1), 5–13.

(35) Sato, M.; Grasser, W.; Endo, N.; Akins, R.; Simmons, H.; Thompson, D. D.; Golub, E.; Rodan, G. A. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. *J. Clin. Invest.* **1991**, *88* (6), 2095–105.

(36) Kim, H. K.; Kim, J. H.; Abbas, A. A.; Yoon, T. R. Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. *Clin. Orthop. Relat. Res.* **2009**, *467* (12), 3121–8.

(37) Reinholtz, G. G.; Getz, B.; Pederson, L.; Sanders, E. S.; Subramaniam, M.; Ingle, J. N.; Spelsberg, T. C. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. *Cancer Res.* **2000**, *60* (21), 6001–7.

(38) Im, G. I.; Qureshi, S. A.; Kenney, J.; Rubash, H. E.; Shanbhag, A. S. Osteoblast proliferation and maturation by bisphosphonates. *Biomaterials* **2004**, *25* (18), 4105–15.

(39) Sahni, M.; Guenther, H. L.; Fleisch, H.; Collin, P.; Martin, T. J. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. *J. Clin. Invest.* **1993**, *91* (5), 2004–11.

(40) Hughes, D. E.; MacDonald, B. R.; Russell, R. G.; Gowen, M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. *J. Clin. Invest.* **1989**, *83* (6), 1930–5.

(41) Cecchini, M. G.; Felix, R.; Fleisch, H.; Cooper, P. H. Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. *J. Bone Miner. Res.* **1987**, *2* (2), 135–42.

(42) Lowik, C. W.; van der Pluijm, G.; van der Wee-Pals, L. J.; van Treslong-De Groot, H. B.; Bijvoet, O. L. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts: the effect of a bisphosphonate. *J. Bone Miner. Res.* **1988**, *3* (2), 185–92.

(43) Hughes, D. E.; Wright, K. R.; Uy, H. L.; Sasaki, A.; Yoneda, T.; Roodman, G. D.; Mundy, G. R.; Boyce, B. F. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. *J. Bone Miner. Res.* **1995**, *10* (10), 1478–87.

(44) Ito, M.; Amizuka, N.; Nakajima, T.; Ozawa, H. Ultrastructural and cytochemical studies on cell death of osteoclasts induced by bisphosphonate treatment. *Bone* **1999**, *25* (4), 447–52.

(45) Fisher, J. E.; Rogers, M. J.; Halasy, J. M.; Luckman, S. P.; Hughes, D. E.; Masarachia, P. J.; Wesolowski, G.; Russell, R. G.; Rodan, G. A.; Reszka, A. A. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96* (1), 133–8.

(46) Shipman, C. M.; Croucher, P. I.; Russell, R. G.; Helfrich, M. H.; Rogers, M. J. The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. *Cancer Res.* **1998**, *58* (23), 5294–7.

(47) Luckman, S. P.; Hughes, D. E.; Coxon, F. P.; Graham, R.; Russell, G.; Rogers, M. J. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. *J. Bone Miner. Res.* **1998**, *13* (4), 581–9.

(48) Nishikawa, M.; Akatsu, T.; Katayama, Y.; Yasutomo, Y.; Kado, S.; Kugal, N.; Yamamoto, M.; Nagata, N. Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. *Bone* **1996**, *18* (1), 9–14.

(49) Giuliani, N.; Pedrazzoni, M.; Negri, G.; Passeri, G.; Impicciatore, M.; Girasole, G. Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. *Bone* **1998**, *22* (5), 455–61.

(50) Garcia-Moreno, C.; Serrano, S.; Nacher, M.; Farre, M.; Diez, A.; Marinoso, M. L.; Carbonell, J.; Mellibovsky, L.; Nogues, X.; Ballester, J.; Aubia, J. Effect of alendronate on cultured normal human osteoblasts. *Bone* **1998**, *22* (3), 233–9.

(51) Reszka, A. A.; Halasy-Nagy, J. M.; Masarachia, P. J.; Rodan, G. A. Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. *J. Biol. Chem.* **1999**, *274* (49), 34967–73.

(52) Khokher, M. A.; Dandona, P. Diphosphonates inhibit human osteoblast secretion and proliferation. *Metabolism* **1989**, *38* (2), 184–7.

(53) Klein, B. Y.; Ben-Bassat, H.; Breuer, E.; Solomon, V.; Golomb, G. Structurally different bisphosphonates exert opposing effects on alkaline phosphatase and mineralization in marrow osteoprogenitors. *J. Cell. Biochem.* **1998**, *68* (2), 186–94.

(54) Plotkin, L. I.; Weinstein, R. S.; Parfitt, A. M.; Roberson, P. K.; Manolagas, S. C.; Bellido, T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. *J. Clin. Invest.* **1999**, *104* (10), 1363–74.

(55) Giuliani, N.; Pedrazzoni, M.; Passeri, G.; Girasole, G. Bisphosphonates inhibit IL-6 production by human osteoblast-like cells. *Scand. J. Rheumatol.* **1998**, *27* (1), 38–41.

(56) Vitte, C.; Fleisch, H.; Guenther, H. L. Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. *Endocrinology* **1996**, *137* (6), 2324–33.

(57) Pan, B.; Farrugia, A. N.; To, L. B.; Findlay, D. M.; Green, J.; Lynch, K.; Zannettino, A. C. The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). *J. Bone Miner. Res.* **2004**, *19* (1), 147–54.

(58) Viereck, V.; Emons, G.; Lauck, V.; Frosch, K. H.; Blaschke, S.; Grundker, C.; Hofbauer, L. C. Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. *Biochem. Biophys. Res. Commun.* **2002**, *291* (3), 680–6.